Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Heliyon ; 10(7): e28489, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560243

RESUMEN

Objective: The substantial prevalence of nonadherence to analgesic medication among individuals diagnosed with cancer imposes a significant strain on both patients and healthcare resources. The objective of this study is to develop and authenticate a nomogram model for assessing nonadherence to analgesic medication in cancer patients. Methods: Clinical information, demographic data, and medication adherence records of cancer pain patients were gathered from the Affiliated Hospital of Chengde Medical University between April 2020 and March 2023. The risk factors associated with analgesic medication nonadherence in cancer patients were analyzed using the least absolute selection operator (LASSO) regression model and multivariate logistic regression. Additionally, a nomogram model was developed. The bootstrap method was employed to internally verify the model. Discrimination and accuracy of the nomogram model were evaluated using the Concordance index (C-index), area under the receiver Operating characteristic (ROC) curve (AUC), and calibration curve. The potential clinical value of the nomogram model was established through decision curve analysis (DCA) and clinical impact curve. Results: The study included a total of 450 patients, with a nonadherence rate of 43.33%. The model incorporated seven factors: age, address, smoking history, number of comorbidities, use of nonsteroidal antiinflammatory drugs (NSAIDs), use of opioids, and PHQ-8. The C-index of the model was found to be 0.93 (95% CI: 0.907-0.953), and the ROC curve demonstrated an AUC of 0.929. Furthermore, the DCA and clinical impact curves indicate that the built model can accurately predict cancer pain patients' medication adherence performance. Conclusions: A nomogram model based on 7 risk factors has been successfully developed and validated for long-term analgesic management of cancer patients.

2.
Liver Int ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597373

RESUMEN

BACKGROUND AND AIMS: Iron overload, oxidative stress and ferroptosis are associated with liver injury in alcohol-associated liver disease (ALD), however, the crosstalk among these regulatory pathways in ALD development is unclear. METHODS: ALD mouse model and general control of amino acid synthesis 5 like 1 (GCN5L1) liver knockout mice were generated to investigate the role of GCN5L1 in ALD development. Proteomic screening tests were performed to identify the key factors mediating GCN5L1 loss-induced ALD. RESULTS: Gene Expression Omnibus data set analysis indicates that GCN5L1 expression is negatively associated with ALD progression. GCN5L1 hepatic knockout mice develop severe liver injury and lipid accumulation when fed an alcohol diet. Screening tests identified that GCN5L1 targeted the mitochondrial iron transporter CISD1 to regulate mitochondrial iron homeostasis in ethanol-induced ferroptosis. GCN5L1-modulated CISD1 acetylation and activity were crucial for iron accumulation and ferroptosis in response to alcohol exposure. CONCLUSION: Pharmaceutical modulation of CISD1 activity is critical for cellular iron homeostasis and ethanol-induced ferroptosis. The GCN5L1/CISD1 axis is crucial for oxidative stress and ethanol-induced ferroptosis in ALD and is a promising avenue for novel therapeutic strategies.

3.
J Chromatogr Sci ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38048443

RESUMEN

OBJECTIVE: To verify the equivalence of hawthorn leaves standard decoction and formula granules. METHODS: In this experiment, liquid chromatograph mass spectrometer (LC-MS) was used to examine the chemical composition of hawthorn leaves standard decoction and formula granules, separately. In addition, oxidative stress test was used to explore the antioxidant capacity of them. RESULTS: 71 chemical components were identified by LC-MS. Among them, 64 and 56 compounds were identified in the standard decoction and formula granules, respectively. There were a total of 49 common components, with no significant difference in content. Oxidative stress test showed that hawthorn leaves standard decoction and formula granules had no obvious toxicity to human umbilical vein endothelial cells. Compared with the model group, the same dose of hawthorn leaves formula granule and standard decoction could inhibit the secretion of lactate dehydrogenase and malondialdehyde (P < 0.05), and increase the content of superoxide dismutase (P < 0.01), with no statistically significant difference. CONCLUSIONS: There is no significant difference in the main active ingredients between the standard decoction and the formula granules, and the antioxidant activity in vitro is equivalent, providing an important theoretical basis for the further development of hawthorn leaves formula granules.

4.
Oncogene ; 42(13): 1024-1037, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36759571

RESUMEN

Metabolic reprogram is crucial to support cancer cell growth and movement as well as determine cell fate. Mitochondrial protein acetylation regulates mitochondrial metabolism, which is relevant to cancer cell migration and invasion. The functional role of mitochondrial protein acetylation on cancer cell migration remains unclear. General control of amino acid synthesis 5 like-1(GCN5L1), as the regulator of mitochondrial protein acetylation, functions on metabolic reprogramming in mouse livers. In this study, we find that GCN5L1 expression is significantly decreased in metastatic HCC tissues. Loss of GCN5L1 promotes reactive oxygen species (ROS) generation through enhanced fatty acid oxidation (FAO), followed by activation of cellular ERK and DRP1 to promote mitochondrial fission and epithelia to mesenchymal transition (EMT) to boost cell migration. Moreover, palmitate and carnitine-stimulated FAO promotes mitochondrial fission and EMT gene expression to activate HCC cell migration. On the other hand, increased cellular acetyl-CoA level, the product of FAO, enhances HCC cell migration. Taken together, our finding uncovers the metastasis suppressor role as well as the underlying mechanism of GCN5L1 in HCC and also provides evidence of FAO retrograde control of HCC metastasis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
5.
Biochem Biophys Res Commun ; 621: 1-7, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-35802941

RESUMEN

Hepatic gluconeogenesis is crucial for maintaining blood glucose during starvation, and a major contributor for hyperglycemia. Cellular redox state is related to mitochondrial biology and regulates conversion of specific metabolites to glucose. General control of amino acid synthesis 5 (GCN5) like-1 (GCN5L1) is a mitochondria-enriched protein which modulates glucose and amino acid metabolism. Here we show a new regulatory mode of GCN5L1 on gluconeogenesis using lactate and glycerol. We observed GCN5L1 deletion dramatically inhibited glucose production derived from glycerol and lactate, due to increased cytosolic redox state. The underlying mechanism is that GCN5L1 directly binds to the key component of mitochondrial shuttle glycerol phosphate dehydrogenase 2 (GPD2) and modulates its activity. These results have significant implications for understanding the physiological role and regulatory mechanism of mitochondrial shuttle in diabetes development and provide a novel therapeutic potential for diabetes.


Asunto(s)
Gluconeogénesis , Glicerolfosfato Deshidrogenasa , Aminoácidos/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Fosfatos/metabolismo
6.
Clin Transl Med ; 12(5): e852, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35538890

RESUMEN

BACKGROUND: Glutaminolysis is a critical metabolic process that promotes cancer cell proliferation, including hepatocellular carcinoma (HCC). Delineating the molecular control of glutaminolysis could identify novel targets to ameliorate this oncogenic metabolic pathway. Here, we evaluated the role of general control of amino acid synthesis 5 like 1 (GCN5L1), a regulator of mitochondrial protein acetylation, in modulating the acetylation and activity of glutaminase to regulate HCC development. METHODS: Cell proliferation was determined by MTT, 2D and soft agar clone formation assays and orthotopic tumour assays in nude mice. GLS1/2 acetylation and activities were measured in cells and tumours to analyse the correlation with GCN5L1 expression and mTORC1 activation. RESULTS: Hepatic GCN5L1 ablation in mice markedly increased diethylnitrosamine (DEN)-induced HCC, and conversely, the transduction of mitochondrial-restricted GCN5L1 protected wild-type mice against HCC progression in response to DEN and carbon tetrachloride (CCl4 ) exposure. GCN5L1-depleted HepG2 hepatocytes enhanced tumour growth in athymic nude mice. Mechanistically, GCN5L1 depletion promoted cell proliferation through mTORC1 activation. Interestingly, liver-enriched glutaminase 2 (GLS2) appears to play a greater role than ubiquitous and canonical tumour-enriched glutaminase 1 (GLS1) in promoting murine HCC. Concurrently, GCN5L1 promotes acetylation and inactivation of both isoforms and increases enzyme oligomerisation. In human HCC tumours compared to adjacent tissue, there were variable levels of mTORC1 activation, GCN5L1 levels and glutaminase activity. Interestingly, the levels of GCN5L1 inversely correlated with mTORC1 activity and glutaminase activity in these tumours. CONCLUSIONS: Our study identified that glutaminase activity, rather than GLS1 or GLS2 expression, is the key factor in HCC development that activates mTORC1 and promotes HCC. In the Kaplan-Meier analysis of liver cancer, we found that HCC patients with high GCN5L1 expression survived longer than those with low GCN5L1 expression. Collectively, GCN5L1 functions as a tumour regulator by modulating glutaminase acetylation and activity in the development of HCC.


Asunto(s)
Carcinoma Hepatocelular , Glutaminasa , Neoplasias Hepáticas , Proteínas Mitocondriales , Proteínas del Tejido Nervioso , Acetilación , Animales , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Glutaminasa/genética , Glutaminasa/metabolismo , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Desnudos , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo
8.
J Ethnopharmacol ; 280: 114477, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34343645

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huyang Yangkun Formula(HYF) is a traditional Chinese medicine formula based on the traditional theory of Yin and Yang. It could consolidate the Qi of Yin and Yang, adjust the balance of Qi and blood. It has shown clinical efficacy for patients with Premature Ovarian Insufficiency(POI). AIM OF THE STUDY: Aim to access the effect of Huyang Yangkun formula (HYF) on premature ovarian insufficiency rat model and explores the mechanism related to aquaporins(AQPs) and apoptosis. MATERIALS AND METHODS: Female SD rats were injected with 4-vinylcyclonhexenediepoxide(VCD, 160 mg/kg/day) for 15 days. Then, HYF (0.297 g/kg)/estradiol valerate (0.1 mg/kg) was administered for 105 days in the HYF/estradiol valerate treatment(EVT) group. Serum AMH, FSH and E2 were detected by ELISA, and the developing follicles were counted in each group.The TUNEL assay was used to detect positive apoptotic signals. IHC and western blots were used to verify differentially expressed AQPs and apoptosis-related regulators potentially associated with HYF. RESULTS: Total follicles were increased significantly in the HYF group. Serum AMH was increased in the HYF group compared with MOD group. Serum FSH and E2 showed no obvious difference between HYF group and MOD group. Apoptosis occurred in POI model was proved by TUNEL and Caspase3/9 and HYF could rescue this apoptosis, besides the anti-apoptotic effect may be better than EVT. Distribution of AQPs in rat ovaries based on developmental stages of follicle was observed, and AQP8 was obviously expressed in the developing follicles and corpus luteum, particularly in granulosa cells. Upregulation of AQP8 in the MOD group and downregulation by HYF were observed. BCL-XL was significantly upregulated in the HYF group and EVT group; BCL-2 was upregulated in the HYF group with no statistical difference; MCL-1 was downregulated in the HYF group. BAX and BIM were significantly upregulated in the MOD group. The ratio of BCL-2/BAX and BCL-XL/BAX were decreased in the MOD group, and BCL-XL/BAX was increased in the HYF group and EVT group. CONCLUSION: This study evaluated the treatment effect of HYF on POI in rats. It showed that HYF could promote the follicles development by regulating AQP8/Bcl-2 family-related mitochondrial apoptosis, which provides basic evidence for TCM as an alternative therapy for POI.


Asunto(s)
Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Folículo Ovárico/efectos de los fármacos , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Animales , Acuaporinas/metabolismo , Modelos Animales de Enfermedad , Estradiol , Femenino , Mitocondrias/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Nat Commun ; 12(1): 2745, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980856

RESUMEN

In mice, time of day strongly influences lethality in response to LPS, with survival greatest at the beginning compared to the end of the light cycle. Here we show that feeding, rather than light, controls time-of-day dependent LPS sensitivity. Mortality following LPS administration is independent of cytokine production and the clock regulator BMAL1 expressed in myeloid cells. In contrast, deletion of BMAL1 in hepatocytes globally disrupts the transcriptional response to the feeding cycle in the liver and results in constitutively high LPS sensitivity. Using RNAseq and functional validation studies we identify hepatic farnesoid X receptor (FXR) signalling as a BMAL1 and feeding-dependent regulator of LPS susceptibility. These results show that hepatocyte-intrinsic BMAL1 and FXR signalling integrate nutritional cues to regulate survival in response to innate immune stimuli. Understanding hepatic molecular programmes operational in response to these cues could identify novel pathways for targeting to enhance endotoxemia resistance.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Conducta Alimentaria/fisiología , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Sepsis/mortalidad , Factores de Transcripción ARNTL/genética , Animales , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Resistencia a la Enfermedad , Hepatocitos/metabolismo , Hipoglucemia/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/genética , Sepsis/inducido químicamente , Sepsis/genética , Sepsis/metabolismo , Transducción de Señal
10.
Biomed Res Int ; 2021: 5516100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055974

RESUMEN

BACKGROUND: The aim of this study was to systematically evaluate the relationship between the expression of m6A RNA methylation regulators and prognosis in HCC. METHODS: We compared the expression of m6A methylation modulators and PD-L1 between HCC and normal in TCGA database. HCC samples were divided into two subtypes by consensus clustering of data from m6A RNA methylation regulators. The differences in PD-L1, immune infiltration, and prognosis between the two subtypes were further compared. The LASSO regression was used to build a risk score for m6A modulators. In addition, we identified miRNAs that regulate m6A regulators. RESULTS: We found that fourteen m6A regulatory genes were significantly differentially expressed between HCC and normal. HCC samples were divided into two clusters. Of these, there are higher PD-L1 expression and poorer overall survival (OS) in cluster 1. There was a significant difference in immune cell infiltration between cluster 1 and cluster 2. Through the LASSO model, we obtained 12 m6A methylation regulators to construct a prognostic risk score. Compared with patients with a high-risk score, patients with a low-risk score had upregulated PD-L1 expression and worse prognosis. There was a significant correlation between risk score and tumor-infiltrating immune cells. Finally, we found that miR-142 may be the important regulator for m6A RNA methylation in HCC. CONCLUSION: Our results suggest that m6A RNA methylation modulators may affect the prognosis through PD-L1 and immune cell infiltration in HCC patients. In addition, the two clusters may be beneficial for prognostic stratification and improving immunotherapeutic efficacy.


Asunto(s)
Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Antígeno B7-H1/genética , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/genética , Metilación , Pronóstico , Proteínas de Unión al ARN
11.
Artículo en Inglés | MEDLINE | ID: mdl-34035823

RESUMEN

Premature ovarian insufficiency (POI) is a common female endocrine disease that is closely linked to ovarian function. Danggui Buxue Tang (DBT) is a classic prescription of traditional Chinese medicine that is helpful for rescuing ovarian function. However, the mechanism by which DBT rescues ovarian function remains unclear. This study explored the molecular mechanism of DBT with respect to apoptosis and related signals in ovarian cells. The quality control of DBT was performed by HPLC. After DBT intervention in the POI rat model, serum AMH/FSH/LH/E2 levels were detected by ELISA, follicles at various developmental stages were observed by HE staining, apoptosis was detected by TUNEL, and the expression profiles of Bcl-2 family proteins and key proteins in the Jak2/Foxo3a signaling pathway were evaluated by western blot. The results demonstrated that DBT could encourage the development of primary/secondary/antral follicles and increase the secretion of AMH. Moreover, DBT might inhibit Foxo3a by upregulating Jak2, thereby mediating Bcl-2 family activities and inhibiting apoptosis in ovarian cells. In conclusion, DBT promotes follicular development and rescues ovarian function by regulating Bcl-2 family proteins to inhibit cell apoptosis, which could be related to the Jak2/Foxo3a signaling pathway.

12.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194598, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32599084

RESUMEN

General control of amino acid synthesis 5 like 1 (GCN5L1) was named due to its loose sequence alignment to GCN5, a catalytic subunit of numerous histone N-acetyltransferase complexes. Further studies show that GCN5L1 has mitochondrial and cytosolic isoforms, although functional-domain sequence alignment and experimental studies show that GCN5L1 itself does not possess intrinsic acetyltransferase activity. Nevertheless, GCN5L1 does support protein acetylation in the mitochondria and cytosol and functions as a subunit of numerous intracellular multiprotein complexes that control intracellular vacuolar organelle positioning and function. The majority of GCN5L1 studies have focused on distinct intracellular functions and in this review, we summarize these findings as well as postulate what may be common features of the diverse phenotypes linked to GCN5L1.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vacuolas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , Recambio Mitocondrial , Procesamiento Proteico-Postraduccional
13.
Hepatology ; 71(2): 643-657, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31344750

RESUMEN

BACKGROUND AND AIMS: The regenerative capacity of the liver plays a protective role against hepatotoxins and impaired regeneration exacerbates liver dysfunction in nonalcoholic fatty liver disease (NAFLD). Mitochondrial bioenergetic and -synthetic functions are important contributory factors in hepatic regeneration, and the control of mitochondrial protein acetylation is implicated in the mitochondrial susceptibility to liver stressors. Here, we evaluated the role of general control of amino acid synthesis 5 like 1 (GCN5L1), a mediator of mitochondrial metabolism and acetylation, in modulating murine liver regeneration (LR) in response to acute CCl4 -induced hepatotoxicity. APPROACH AND RESULTS: Initial metabolomic screening found that liver GCN5L1 knockout (LKO) mice have augmented glutaminolysis. Absence of GCN5L1 modified enzyme activity of liver-enriched glutaminase enzyme (glutaminase 2; GLS2), and GCN5L1 levels modulated GLS2 oligomerization and acetylation. This metabolic remodeling resulted in the elevation of α-ketoglutarate levels, which are known to activate mammalian target of rapamycin complex 1 (mTORC1). This signaling pathway was induced with increased phosphorylation of S6 kinase in LKO hepatocytes, and inhibition of glutaminolysis reversed aberrant mTORC1 signaling. At the same time, glutaminolysis, activity of GLS2, and activation of mTORC1 signaling were reversed by the genetic reintroduction of the mitochondrial isoform of GCN5L1 into LKO primary hepatocytes. Finally, LKO mice had a more robust regenerative capacity in response to CCl4 hepatoxicity, and this response was blunted by both the mTORC1 inhibitor, rapamycin, and by pharmacological blunting of glutaminolysis. CONCLUSIONS: These data point to a central role of glutaminolysis in modulating the regenerative capacity in the liver. Furthermore, inhibition of mitochondrial GCN5L1 to augment LR may be a useful strategy in disease states linked to hepatotoxicity.


Asunto(s)
Glutamina/metabolismo , Regeneración Hepática/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Proteínas Mitocondriales/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Masculino , Ratones , Transducción de Señal
14.
Biosci Rep ; 39(7)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31278126

RESUMEN

The wide application of oncolytic adenovirus presents a novel therapeutic strategy for breast cancer gene therapy. Application of adenovirus alone achieves little curative effects on breast cancer. In addition, it is worth exploring the synergistic anti-tumor effect by inserting immunomodulatory factor in oncolytic adenovirus genome. By taking the advantage of the highly proliferative property of breast cancer, a novel recombinant adenovirus which could selectively kill tumor cells is established under an E2F-1 promoter. Also by carrying human Interleukin-15 (IL-15) gene, the oncolytic adenovirus exhibits an immunomodulatory effect. The present study proved that the novel oncolytic virus (SG400-E2F/IL-15) exhibits an enhanced anti-tumor activity both in vitro and in vivo, representing an experimental basis for breast cancer "virus-gene" therapy.


Asunto(s)
Adenoviridae , Neoplasias de la Mama , Factor de Transcripción E2F1/metabolismo , Interleucina-15/metabolismo , Proteínas de Neoplasias/metabolismo , Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae/genética , Adenoviridae/metabolismo , Adulto , Anciano , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Factor de Transcripción E2F1/genética , Femenino , Células HEK293 , Humanos , Interleucina-15/genética , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo
15.
JCI Insight ; 52019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31012868

RESUMEN

Glucagon, a hormone released from pancreatic alpha-cells, plays a key role in maintaining proper glucose homeostasis and has been implicated in the pathophysiology of diabetes. In vitro studies suggest that intra-islet glucagon can modulate the function of pancreatic beta-cells. However, because of the lack of suitable experimental tools, the in vivo physiological role of this intra-islet cross-talk has remained elusive. To address this issue, we generated a novel mouse model that selectively expressed an inhibitory designer G protein-coupled receptor (Gi DREADD) in α-cells only. Drug-induced activation of this inhibitory designer receptor almost completely shut off glucagon secretion in vivo, resulting in significantly impaired insulin secretion, hyperglycemia, and glucose intolerance. Additional studies with mouse and human islets indicated that intra-islet glucagon stimulates insulin release primarily by activating ß-cell GLP-1 receptors. These new findings strongly suggest that intra-islet glucagon signaling is essential for maintaining proper glucose homeostasis in vivo. Our work may pave the way toward the development of novel classes of antidiabetic drugs that act by modulating intra-islet cross-talk between α- and ß-cells.


Asunto(s)
Glucemia/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Hiperglucemia/fisiopatología , Células Secretoras de Insulina/metabolismo , Comunicación Paracrina/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Glucagón/sangre , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/efectos de los fármacos , Humanos , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/sangre , Insulina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Comunicación Paracrina/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos
16.
J Cell Sci ; 131(22)2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30333138

RESUMEN

Although GCN5L1 (also known as BLOC1S1) facilitates mitochondrial protein acetylation and controls endosomal-lysosomal trafficking, the mechanisms underpinning these disparate effects are unclear. As microtubule acetylation modulates endosome-lysosome trafficking, we reasoned that exploring the role of GCN5L1 in this biology may enhance our understanding of GCN5L1-mediated protein acetylation. We show that α-tubulin acetylation is reduced in GCN5L1-knockout hepatocytes and restored by GCN5L1 reconstitution. Furthermore, GCN5L1 binds to the α-tubulin acetyltransferase αTAT1, and GCN5L1-mediated α-tubulin acetylation is dependent on αTAT1. Given that cytosolic GCN5L1 has been identified as a component of numerous multiprotein complexes, we explored whether novel interacting partners contribute to this regulation. We identify RanBP2 as a novel interacting partner of GCN5L1 and αTAT1. Genetic silencing of RanBP2 phenocopies GCN5L1 depletion by reducing α-tubulin acetylation, and we find that RanBP2 possesses a tubulin-binding domain, which recruits GCN5L1 to α-tubulin. Finally, we find that genetic depletion of GCN5L1 promotes perinuclear lysosome accumulation and histone deacetylase inhibition partially restores lysosomal positioning. We conclude that the interactions of GCN5L1, RanBP2 and αTAT1 function in concert to control α-tubulin acetylation and may contribute towards the regulation of cellular lysosome positioning. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Acetiltransferasas/metabolismo , Hígado/metabolismo , Lisosomas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Acetilación , Animales , Células HEK293 , Células HeLa , Hepatocitos/metabolismo , Humanos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microtúbulos/metabolismo , Proteínas Mitocondriales , Cultivo Primario de Células , Transfección
17.
Trends Cell Biol ; 28(5): 346-355, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29477615

RESUMEN

General control of amino acid synthesis 5 (GCN5) like-1 (GCN5L1) was identified as a novel gene with sequence homology to the histone acetyltransferase Gcn5. Subsequent protein-interaction studies identified GCN5L1 as a subunit of the multiprotein lysosome biogenesis complex, resulting in an alternative designation as biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1 or BLOC1S1). Despite the distinct nomenclatures, GCN5L1/BLOS1 has been shown to play crucial roles in mitochondria, endosomes, lysosomes, and synaptic vesicle precursors (SVPs). GCN5L1/BLOS1 controls mitochondrial protein acetylation, modulates metabolic pathways, and orchestrates retrograde mitochondria-to-nucleus signaling. It also contributes to endosome-lysosome and vesicle trafficking and to endolysosomal function. Here we discuss the intracellular roles of GCN5L1/BLOS1 in the hope of linking mitochondria-centric effects to cytosolic vesicle biology.


Asunto(s)
Citosol/metabolismo , Mitocondrias/genética , Proteínas del Tejido Nervioso/genética , Biogénesis de Organelos , Acetilación , Endosomas/genética , Endosomas/metabolismo , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/genética , Transducción de Señal , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
18.
Obes Surg ; 28(6): 1595-1601, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29247279

RESUMEN

OBJECTIVE: The study investigated the use of great curvature plication with duodenal-jejunal bypass (GCP-DJB) in a type 2 diabetic with obesity rat model. METHODS: Twenty-two Sprague-Dawley rats were given a high fat and sugar diet with subsequent intraperitoneal injection of a small dosage of streptozotocin (30 mg/kg) and randomly assigned to either GCP-DJB (n = 12) or Sham surgery (n = 10). Body weight, peripheral blood glucose, and fasting serum insulin were assayed, and insulin resistance index (IRI) was calculated, before and at 1, 2, 4, and 8 weeks after surgery. RESULTS: No differences were found in the preoperative characteristics of the two groups (P > 0.05). At week 1, the body weights decreased significantly, but there was no significant difference between the two groups (P > 0.05).The fasting blood glucose was significantly lower in the GCP-DJB than in the Sham group (P < 0.05), serum insulin levels were higher (P < 0.05), and IRI began to decline (P < 0.05). From 2 to 8 weeks, the body weight of Sham group gradually recovered and continued to rise, while the GCP-DJB group remained at a relatively lower state. Compared to the Sham group, the body weight, fasting blood glucose as well as IRI of GCP-DJB rats had significantly decreased (P < 0.05). But, the fasting insulin concentrations had significantly increased (P < 0.05). CONCLUSION: This novel GCP-DJB procedure established a stable animal model for the study of metabolic surgery to treat type 2 diabetes mellitus (T2DM).


Asunto(s)
Cirugía Bariátrica/métodos , Diabetes Mellitus Experimental/cirugía , Diabetes Mellitus Tipo 2/cirugía , Animales , Glucemia/análisis , Resistencia a la Insulina/fisiología , Ratas , Ratas Sprague-Dawley
19.
Nat Commun ; 8(1): 523, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900165

RESUMEN

The mitochondrial enriched GCN5-like 1 (GCN5L1) protein has been shown to modulate mitochondrial protein acetylation, mitochondrial content and mitochondrial retrograde signaling. Here we show that hepatic GCN5L1 ablation reduces fasting glucose levels and blunts hepatic gluconeogenesis without affecting systemic glucose tolerance. PEPCK and G6Pase transcript levels are downregulated in hepatocytes from GCN5L1 liver specific knockout mice and their upstream regulator, FoxO1 protein levels are decreased via proteasome-dependent degradation and via reactive oxygen species mediated ERK-1/2 phosphorylation. ERK inhibition restores FoxO1, gluconeogenic enzyme expression and glucose production. Reconstitution of mitochondrial-targeted GCN5L1 blunts mitochondrial ROS, ERK activation and increases FoxO1, gluconeogenic enzyme expression and hepatocyte glucose production. We suggest that mitochondrial GCN5L1 modulates post-translational control of FoxO1, regulates gluconeogenesis and controls metabolic pathways via mitochondrial ROS mediated ERK activation. Exploring mechanisms underpinning GCN5L1 mediated ROS signaling may expand our understanding of the role of mitochondria in gluconeogenesis control.Hepatic gluconeogenesis is tightly regulated at transcriptional level and is essential for survival during prolonged fasting. Here Wang et al. show that the mitochondrial enriched GCN5-like 1 protein controls hepatic glucose production by regulating FoxO1 protein levels via proteasome-dependent degradation and, in turn, gluconeogenic gene expression.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Gluconeogénesis , Hepatocitos/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Proteína Forkhead Box O1/genética , Expresión Génica , Glucosa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Hepatocitos/enzimología , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales , Proteínas del Tejido Nervioso/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
20.
Zhongguo Zhong Yao Za Zhi ; 41(16): 3100-3106, 2016 Aug.
Artículo en Chino | MEDLINE | ID: mdl-28920356

RESUMEN

To evaluate the efficacy and safety of Choudongning (CDN)capsule in children with Tourette's syndrome of spleen deficiency and phlegm accumulation through a randomized double-blind three-arm controlled phase Ⅲ study in 588 patients from 8 hospitals. The included patients were randomly divided into test group, positive control group and placebo group at the ratio of 3∶1∶1. Patients in the test group orally took CDN capsules and simulated Tiapridal tablets; the patients in positive control group took Tiapridal tablets and simulated CDN capsules; whereas the patients in placebo group orally took the simulated agents of the above two drugs. The treatment course was 6 weeks for three groups. The global grading rates, YGTSS scores and its factor scores, the degree of social function damage, as well as traditional Chinese medicine syndrome efficacy were evaluated as the outcome measures on efficacy. The AEs/ADRs, vital signs and laboratory testing were observed as outcome measures on safety. The total effective rate of YGTSS was 75.92% in the test group, 72.65% in the positive control group, and 37.29% in the placebo group. Non inferiority test stands between the test group and the positive control group, and they were superior to placebo group in efficacy with statistical difference. Significant difference had also been found among the 3 groups in YGTSS tics score, motor tics score, vocal tics, degree of social function damage and traditional Chinese medicine syndrome efficacy. During the study, there were 5 (1.42%)ADRs in the test group, 10 (8.55%)in the positive control group and 3 (2.54%)in the placebo group. The incidence of ADRs in the test group was lower than that in the positive control group, with statistical difference. It is clear to say that CDN capsule can effectively treat the Tourette's syndrome of spleen deficiency and phlegm accumulation. Its efficacy is not inferior to the commonly used Tiapridal tablets, with even less adverse reactions, so it has clinical application value.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Síndrome de Tourette/tratamiento farmacológico , Cápsulas , Niño , Método Doble Ciego , Humanos , Medicina Tradicional China , Bazo/fisiopatología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...